Literature on Reservoir Management

In this repository you will find a list of references on five different research topics in reservoir management researched in the CHARM (CHallenges of Reservoir Management) project. The original source is provided via hyperlink. Where applicable, you can downbload the corresponding literature.

Literature categorised after the topic:

Sediment

  1. Aguiar, F.C., Martins, M.J., Silva, P.C., Fernandes, M.R., 2016. Riverscapes downstream of hydropower dams. Effects of altered flows and historical land-use change. Landscape and Urban Planning 153, 83-98.

  2. Annandale, G.W., 1987. Reservoir sedimentation. Elsevier, Amsterdam.

  3. Atkinson, E., 1996. The Feasibility of Flushing Sediment from Reservoirs, TDR Project R5839, Report OD 137, HR Wallingford.

  4. Banasiak, R., Verhoeven, R., De Sutter, R., Tait, S., 2005. The erosion behaviour of biologically active sewer sediment deposits: Observations from a laboratory study. Water Res. 39, 5221–5231. https://doi.org/10.1016/j.watres.2005.10.011

  5. Batuca, D. and Jordaan, J., 2000. Silting and Desilting of Reservoirs. A.A. Balkema, Rotterdam.

  6. Beckers, F., Haun, S., Gerbersdorf, S.U., Noack, M., Dietrich, D., Martin-Creuzburg, D., Peeters, F., Hofmann, H., Glaser, R., Wieprecht, S., 2018. CHARM - Challenges of Reservoir Management - Meeting environmental and social requirements. Hydrolink 2018, 16–18.

  7. Beckers, F., Haun, S., Noack, M., 2108. Experimental investigation of reservoir sediments. E3S Web of Conferences.

  8. Beckers, F., Inskeep, C., Haun, S., Schmid, G., Wieprecht, S., Noack, M., 2020. High spatio‐temporal resolution measurements of cohesive sediment erosion. Earth Surf. Process. Landforms (Earth Surface Processes and Landforms) 4, 43.

  9. Black, K. S., Tolhurst, T. J., Paterson, D. M., Hagerthey, S. E., 2002. Working with Natural Cohesive Sediments. J. Hydraul. Eng. (Journal of Hydraulic Engineering) 128 (1), 2-8.

  10. Blöschl, G., Bierkens, M. F.P., Chambel, A., Cudennec, C., Destouni, G., Fiori, A., Kirchner, J. W., McDonnell, J. J., Savenije, H. H.G., Sivapalan, M., Stumpp, C., Toth, E., Volpi, E., Carr, G., Lupton, […] Haun, S. et al. 2019. Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrological Sciences Journal 64 (10), 1141–1158.

  11. Blöschl, G., Hall, J., Viglione, A., Perdigão, R.A.P., Parajka, J., Merz, B., Lun, D. Arheimer, B., Aronica, G.T., Bilibashi, A., Boháč, M., Bonacci, O., Borga, M., Čanjevac, I., Castellarin, A. et al. 2019. Changing climate both increases and decreases European river floods. Nature, 573 (7772), 108-111.

  12. Döll, P., Fiedler, K., Zhang, J., 2009. Global-scale analysis of river flow alterations due to water withdrawals and reservoirs Hydrol. Earth Syst. Sci. 13, 2413–2432.

  13. Droppo, I.G., D’Andrea, L., Krishnappan, B.G., Jaskot, C., Trapp, B., Basuvaraj, M., Liss, S.N., 2015. Fine-sediment dynamics: towards an improved understanding of sediment erosion and transport J. Soils Sediments 15, 467–479.

  14. Esmaeili, T., Sumi, T., Kantoush, S.A., Kubota, Y., Haun, S., Rüther, N. 2017. Three-Dimensional Numerical Study of Free-Flow Sediment Flushing to Increase the Flushing Efficiency: A Case-Study Reservoir in Japan. Water; 9: 1-22.

  15. Fan, J. and Morris, G.L., 1992. Reservoir Sedimentation. II: Reservoir Desiltation and Long-Term Storage Capacity Journal of Hydraulic Engineering, ASCE, 118(3).

  16. Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki, N., Konzmann, M., Ludwig, F., Masaki, Y., Schewe, J., Stacke, T., Tessler, Z.D., Wada, Y., Wisser, D., 2014. Global water resources affected by human interventions and climate change Proc. Natl. Acad. Sci. 111, 3251–3256.

  17. Harb, G., 2013. Numerical Modeling of Sediment Transport Processes in Alpine Reservoirs Dissertation, Schriftenreihe zur Wasserwirtschaft der Technischen Universität Graz, Band 73.

  18. Harb, G., Haun, S., Schneider, J., Olsen, N.R.B., 2014. Numerical analysis of synthetic granulate deposition in a physical model study. International Journal of Sediment Research, 29, 110-117.

  19. Haun, S., Kjærås, H., Løvfall, S. and Olsen, N.R.B., 2013. Three-dimensional measurements and numerical modelling of suspended sediments in a hydropower reservoir Journal of Hydrology 479: 180-188.

  20. Haun, S., Olsen, N. R. B., 2012. Three-dimensional numerical modelling of reservoir flushing in a prototype scale. International Journal of River Basin Management 10 (4), 341–349.

  21. Haun, S., Olsen, N.R.B., 2012. Three-dimensional numerical modelling of the flushing process of the Kali Gandaki Hydropower Reservoir. Lakes & Reservoirs: Research & Management; 17(1), 25-33.

  22. Kondolf, G.M., Gao, Y., Annandale, G.W., Morris, G.L., Jiang, E., Zhang, J., Cao, Y., Carling, P., Fu, K., Guo, Q., Hotchkiss, R., Peteuil, Ch., Sumi, T., Wang, H.-W.,Wang, Z., Wei, Z., Wu, B., Wu, C. and Ted Yang, Ch.T., 2014. Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents Earth’s Future 2(5): 256-280.

  23. Kunz, M., Mouris, K., Haun, S., Karmacharya, S.K., Rüther, N., 2020. Numerical Analysis of Bed Development during Pressure Flushing with Partial Drawdown. River Flow 2020 - 10th international conference on fluvial hydraulics (7. - 9. July 2020, Lyon).

  24. Mahmood, K., 1987. Reservoir sedimentation: impact, extent and mitigation World Bank Technical Paper. 71, Washington D.C..

  25. Milliman, J.D. and Farnsworth, K.L., 2011. River Discharge to the Coastal Ocean - A Global Synthesis Cambridge University Press.

  26. Milliman, J.D., Syvitski, J.P.M., 1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers Journal of Geology 100, 325– 344.

  27. Morris, G.L. and Fan, J., 1998. Reservoir Sediment Handbook McGraw-Hill Book Co., New York.

  28. Mouris, K., Beckers, F., Haun, S., 2019. Three-dimensional numerical modeling of hydraulics and morphodynamics of the Schwarzenbach reservoir. River Flow 2018 - 9th international conference on fluvial hydraulics (5. - 8. September 2018, Lyon). E3S Web of Conferences, 2018.

  29. Mulligan, M., van Soesbergen, A., Sáenz, L., 2020. GOODD, a global dataset of more than 38,000 georeferenced dams Sci. Data 7, 31.

  30. Nilsson, C., Reidy, C.A., Dynesius, M., Revenga, C., 2005. Fragmentation and Flow Regulation of the World’s Large River Systems Science 308, 405–408.

  31. Noack, M., Gerbersdorf, S., Hillebrand, G., Wieprecht, S., 2015. Combining Field and Laboratory Measurements to Determine the Erosion Risk of Cohesive Sediments Best. Water 7 (9), 5061–5077.

  32. Peteuil, C., Jodeau, M., De Linares, M., Valette, E., Alliau, D., Wirz, C., Fretaud, T., Antoine, G., Sécher, M., 2018. Toward an operational approach for the characterization and modelling of fine sediments dynamics in reservoirs. E3S Web of Conferences.

  33. Pohlert, T., Hillebrand, G., and Breitung, V., 2011. Trends of persistent organic pollutants in the suspended matter of the river rhine Hydrological Processes, 25:3803–3817.

  34. Rashid, F., Zarrati, A.R., Haun, S., 2020. Recent Advances in 3D Numerical Modeling of Reservoir Sedimentation. 18th Iranian Hydraulic Conference, 5-6 February 2020; Faculty of Civil Engineering, University of Tehran, Tehran, Iran.

  35. Saam, L., Mouris, K., Wieprecht, S., Haun, S., 2019. Three-dimensional numerical modelling of reservoir flushing to obtain long-term sediment equilibrium. E-proceedings of the 38th IAHR World Congress, September 1-6, 2019, Panama City, Panama.

  36. Schäfer Rodrigues Silva, A., Noack, M., Schlabing, D., Wieprecht, S., 2018. A data-driven fuzzy approach to simulate the critical shear stress of mixed cohesive/non-cohesive sediments. J Soils Sediments (Journal of Soils and Sediments) 18 (10), 3070–3081.

  37. Schleiss, A. J., Franca, M. J., Juez, C., Cesare, G. de, 2016. Reservoir sedimentation. Journal of Hydraulic Research, 54 (6), 595–614.

  38. Shen, H.W., 1999. Flushing sediment through reservoirs IAHR Journal of Hydraulic Research, 37(6), 743–757.

  39. Sumi, T. and Kantoush, S.A., 2011. Sediment management strategies for sustainable reservoir Dams and Reservoirs under Changing Challenges, Eds. Schleiss, A.J. and Boes R.M. CRC Press. ISBN 9780415682671.

  40. Syvitski, J.P.M., Vörösmarty, C.J., Kettner, A.J., Green, P., 2005. Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean Science 308, 376–380.

  41. Vörösmarty, C.J., Meybeck, M., Fekete, B. and Sharma, K., 1997. The potential impact of neo-Castorization on sediment transport by the global network of rivers Walling, D.E., and Probst, J.L. (Eds.). Human Impact on Erosion and Sedimentation. (Proc. Rabat Symposium, April 1997) (IAHS Publication 245). Wallingford, UK: 261–273

  42. Vörösmarty, C.J., Meybeck, M., Fekete, B., Sharma, K., Green, P. and Syvitski, J.P.M., 2003. Anthropogenic sediment retention: major global impact from registered river impoundments Global and Planetary Change, Vol. 39. Amsterdam, Elsevier Science, 169–90.

  43. White, R., 2001. Evacuation of sediments from reservoirs Thomas Telford Publishing.

  44. Yoon, Y.N., 1992. The state and the perspective of the direct sediment removal methods from reservoirs International Journal of Sediment Research, 7(2), 99–116.

Biofilms

  1. Battin, T.J., Besemer, K., Bengtsson, M.M., Romani, A.M., Packmann, A.I., 2016. The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol. 14, 251–263. [https://doi.org/10.1038/nrmicro.2016.15]

  2. Berke, A.P., Turner, L., Berg, H.C., Lauga, E., 2008. Hydrodynamic Attraction of Swimming Microorganisms by Surfaces. Phys. Rev. Lett. 101, 038102. [https://doi.org/10.1103/PhysRevLett.101.038102]

  3. Block, J.C., Haudidier, K., Paquin, J.L., Miazga, J., Levi, Y., 1993. Biofilm accumulation in drinking water distribution systems. Biofouling 6, 333–343. [https://doi.org/10.1080/08927019309386235]

  4. Burns, A., Ryder, D.S., 2001. Potential for biofilms as biological indicators in Australian riverine systems. Ecol. Manag. Restor. 2, 53–64. [https://doi.org/10.1046/j.1442-8903.2001.00069.x]

  5. Chen, X.D., Zhang, C.K., Zhou, Z., Gong, Z., Zhou, J.J., Tao, J.F., Paterson, D.M., Feng, Q., 2017. Stabilizing Effects of Bacterial Biofilms: EPS Penetration and Redistribution of Bed Stability Down the Sediment Profile. J. Geophys. Res. Biogeosciences 122, 3113–3125. [https://doi.org/10.1002/2017JG004050]

  6. Chen, X., Zhang, C., Paterson, D.M., Townend, I.H., Jin, C., Zhou, Z., Gong, Z., Feng, Q., 2019. The effect of cyclic variation of shear stress on non-cohesive sediment stabilization by microbial biofilms: the role of ‘biofilm precursors’. Earth Surf. Process. Landf. 44, 1471–1481. https://doi.org/10.1002/esp.4573

  7. Chen, X.D., Zhang, C.K., Paterson, D.M., Thompson, C.E.L., Townend, I.H., Gong, Z., Zhou, Z., Feng, Q., 2017. Hindered erosion: The biological mediation of noncohesive sediment behavior. Water Resour. Res. 53, 4787–4801. https://doi.org/10.1002/2016WR020105

  8. Cheng, W., Fang, H., Lai, H., Huang, L., Dey, S., 2018. Effects of biofilm on turbulence characteristics and the transport of fine sediment. J. Soils Sediments 18, 3055–3069. https://doi.org/10.1007/s11368-017-1859-1

  9. Dang, H., Lovell, C.R., 2015. Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiol. Mol. Biol. Rev. MMBR 80, 91–138. [https://doi.org/10.1128/MMBR.00037-15]

  10. Dalu, T., Cuthbert, R.N., Chavalala, T.L., Froneman, P.W., Wasserman, R.J., 2020. Assessing sediment particle-size effects on benthic algal colonisation and total carbohydrate production. Sci. Total Environ. 710, 136348. https://doi.org/10.1016/j.scitotenv.2019.136348

  11. Danovaro, R., Pusceddu, A., 2007. Biodiversity and ecosystem functioning in coastal lagoons: Does microbial diversity play any role? Estuar. Coast. Shelf Sci., Biodiversity and Ecosystem Functioning in Coastal and Transitional Waters 75, 4–12. [https://doi.org/10.1016/j.ecss.2007.02.030]

  12. de Brouwer, J.F.C., Wolfstein, K., Ruddy, G.K., Jones, T.E.R., Stal, L.J., 2005. Biogenic Stabilization of Intertidal Sediments: The Importance of Extracellular Polymeric Substances Produced by Benthic Diatoms. Microb. Ecol. 49, 501–512. [https://doi.org/10.1007/s00248-004-0020-z]

  13. Fang, H., Fazeli, M., Cheng, W., Dey, S., 2016. Transport of biofilm-coated sediment particles J. Hydraul. Res. 54, 631–645.

  14. Fang, H., Fazeli, M., Cheng, W., Huang, L., Hu, H., 2015. Biostabilization and Transport of Cohesive Sediment Deposits in the Three Gorges Reservoir PLoS ONE 10.

  15. Fang, H., Zhao, H., Shang, Q., Chen, M., 2012. Effect of biofilm on the rheological properties of cohesive sediment Hydrobiologia 694, 171–181.

  16. Fang, H.W., Lai, H.J., Cheng, W., Huang, L., He, G.J., 2017. Modeling sediment transport with an integrated view of the biofilm effects Water Resour. Res. 53, 7536–7557.

  17. Fang, H., Chen, Y., Huang, L., He, G., 2017. Biofilm growth on cohesive sediment deposits: laboratory experiment and model validation. Hydrobiologia 799, 261–274. https://doi.org/10.1007/s10750-017-3224-1

  18. Fischer, H., Pusch, M., 2001. Comparison of bacterial production in sediments, epiphyton and the pelagic zone of a lowland river Freshw. Biol. 46, 1335–1348.

  19. Flemming, H.-C., 2020. Biofouling and me: My Stockholm syndrome with biofilms Water Res. 173, 115576.

  20. Flemming, H.-C., Wingender, J., 2010. The biofilm matrix Nat. Rev. Microbiol 8, 623–633.

  21. Flemming, H.-C., Wuertz, S., 2019. Bacteria and archaea on Earth and their abundance in biofilms Nat. Rev. Microbiol. 17, 247–260.

  22. Förstner, U., Heise, S., Schwartz, R., Westrich, B., Ahlf, W., 2004. Historical Contaminated Sediments and Soils at the River Basin Scale J. Soils Sediments 4, 247.

  23. Foshtomi, M.Y., Braeckman, U., Derycke, S., Sapp, M., Gansbeke, D.V., Sabbe, K., Willems, A., Vincx, M., Vanaverbeke, J., 2015. The Link between Microbial Diversity and Nitrogen Cycling in Marine Sediments Is Modulated by Macrofaunal Bioturbation PLOS ONE 10, e0130116.

  24. Geesey, G.G., Mutch, R., Costerton, J.W., Green, R.B., 1978. Sessile bacteria: An important component of the microbial population in small mountain streams 1. Limnol. Oceanogr. 23, 1214–1223.

  25. Gerbersdorf, S.U., Jancke, T., Westrich, B., Paterson, D.M., 2008. Microbial stabilization of riverine sediments by extracellular polymeric substances Geobiology 6, 57–69.

  26. Gerbersdorf, S.U., Wieprecht, S., 2015. Biostabilization of cohesive sediments: revisiting the role of abiotic conditions, physiology and diversity of microbes, polymeric secretion, and biofilm architecture Geobiology 13, 68–97.

  27. Gerbersdorf, S.U., Koca, K., de Beer, D., Chennu, A., Noss, C., Risse-Buhl, U., Weitere, M., Eiff, O., Wagner, M., Aberle, J., Schweikert, M., Terheiden, K., 2020. Exploring flow-biofilm-sediment interactions: Assessment of current status and future challenges. Water Res. 185, 116182. https://doi.org/10.1016/j.watres.2020.116182

  28. Gibbs, R.J., 1983. Effect of natural organic coatings on the coagulation of particles Environ. Sci. Technol. 17, 237–240.

  29. Gilbertson, W.W., Solan, M., Prosser, J.I., 2012. Differential effects of microorganism–invertebrate interactions on benthic nitrogen cycling FEMS Microbiol. Ecol. 82, 11–22.

  30. Gu, Y., Zhang, Y., Qian, D., Tang, Y., Zhou, Y., Zhu, D.Z., 2019. Effects of microbial activity on incipient motion and erosion of sediment. Environ. Fluid Mech. https://doi.org/10.1007/s10652-019-09706-9

  31. H. Tuson, H., B. Weibel, D., 2013. Bacteria–surface interactions Soft Matter 9, 4368–4380.

  32. Huiming, Z., Hongwei, F., Minghong, C., 2011. Floc architecture of bioflocculation sediment by ESEM and CLSM Scanning 33, 437–445.

  33. Jones, S., 2017. Goo, glue, and grain binding: Importance of biofilms for diagenesis in sandstones Geology 45, 959–960.

  34. Lozupone, C.A., Knight, R., 2007. Global patterns in bacterial diversity Proc. Natl. Acad. Sci. 104, 11436.

  35. Madsen, E.L., 2011. Microorganisms and their roles in fundamental biogeochemical cycles Curr. Opin. Biotechnol., Energy biotechnology – Environmental biotechnology 22, 456–464.

  36. Malarkey, J., Baas, J.H., Hope, J.A., Aspden, R.J., Parsons, D.R., Peakall, J., Paterson, D.M., Schindler, R.J., Ye, L., Lichtman, I.D., Bass, S.J., Davies, A.G., Manning, A.J., Thorne, P.D., 2015. The pervasive role of biological cohesion in bedform development Nat. Commun. 6.

  37. Nicolella, C., Zolezzi, M., Rabino, M., Furfaro, M., Rovatti, M., 2005. Development of particle-based biofilms for degradation of xenobiotic organic compounds Water Res. 39, 2495–2504.

  38. Passarelli, C., Olivier, F., Paterson, D.M., Meziane, T., Hubas, C., 2014. Organisms as cooperative ecosystem engineers in intertidal flats J. Sea Res., Trophic significance of microbial biofilm in tidal flats 92, 92–101.

  39. Paterson, D.M., Hope, J.A., Kenworthy, J., Biles, C.L., Gerbersdorf, S.U., 2018. Form, function and physics: the ecology of biogenic stabilisation J. Soils Sediments 18, 3044–3054.

  40. Righetti, M., Lucarelli, C., 2010. Resuspension phenomena of benthic sediments: The role of cohesion and biological adhesion River Res. Appl. 26, 404–413.

  41. Roncoroni, M., Brandani, J., Battin, T.I., Lane, S.N., 2019. Ecosystem engineers: Biofilms and the ontogeny of glacier floodplain ecosystems. Wiley Interdiscip. Rev. Water 6, e1390. https://doi.org/10.1002/wat2.1390

  42. Schmidt, H., Thom, M., King, L., Wieprecht, S., Gerbersdorf, S.U., 2016. The effect of seasonality upon the development of lotic biofilms and microbial biostabilisation. Freshw. Biol. 61, 963–978. https://doi.org/10.1111/fwb.12760

  43. Schultz, P., Urban, N.R., 2008. Effects of bacterial dynamics on organic matter decomposition and nutrient release from sediments: A modeling study Ecol. Model. 210, 1–14.

  44. Shang, Q., Fang, H., Zhao, H., He, G., Cui, Z., 2014. Biofilm effects on size gradation, drag coefficient and settling velocity of sediment particles Int. J. Sediment Res. 29, 471–480.

  45. Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Mariñas, B.J., Mayes, A.M., 2008. Science and technology for water purification in the coming decades Nature 452, 301–310.

  46. Stoodley, P., Sauer, K., Davies, D.G., Costerton, J.W., 2002. Biofilms as Complex Differentiated Communities Annu. Rev. Microbiol. 56, 187–209.

  47. Thom, M., Schmidt, H., Gerbersdorf, S.U., Wieprecht, S., 2015. Seasonal biostabilization and erosion behavior of fluvial biofilms under different hydrodynamic and light conditions. Int. J. Sediment Res. 30, 273–284. https://doi.org/10.1016/j.ijsrc.2015.03.015

  48. van de Lageweg, W.I., McLelland, S.J., Parsons, D.R., 2018. Quantifying biostabilisation effects of biofilm-secreted and extracted extracellular polymeric substances (EPSs) on sandy substrate. Earth Surf. Dyn. 6, 203–215. https://doi.org/10.5194/esurf-6-203-2018

  49. Vignaga, E., Sloan, D.M., Luo, X., Haynes, H., Phoenix, V.R., Sloan, W.T., 2013. Erosion of biofilm-bound fluvial sediments Nat. Geosci. 6, 770–774.

  50. Waqas, A., Neumeier, U., Rochon, A., 2020. Seasonal changes in sediment erodibility associated with biostabilization in a subarctic intertidal environment, St. Lawrence Estuary, Canada. Estuar. Coast. Shelf Sci. 245, 106935. https://doi.org/10.1016/j.ecss.2020.106935

  51. Zhou, Y., Yao, X., Gu, Y., Qian, D., Tang, Y., Zhang, Y., Zhu, D.Z., Zhang, T., 2021. Biological effects on incipient motion behavior of sediments with different organic matter content. J. Soils Sediments 21, 627–640. https://doi.org/10.1007/s11368-020-02807-9

Greenhouse Gas emissions

  1. Almeida, R.M., Paranaíba, J.R., Barbosa, Í., Sobek, S., Kosten, S., Linkhorst, A., Mendonça, R., Quadra, G., Roland, F., Barros, N. 2019. Carbon dioxide emission from drawdown areas of a Brazilian reservoir is linked to surrounding land cover Aquat Sci 81, 68 (2019).

  2. Barros, N., Cole, J.J., Tranvik, L.J., Prairie, Y.T., Bastviken, D., Huszar, V.L.M., del Giorgio, P., Roland, F., 2011. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nature Geoscience, 4, 593-596.

  3. Beaulieu, J.J., Smolenski, R.L., Nietch, C.T., Townsend-Small, A., Elovitz, M.S., 2014. High methane emissions from a midlatitude reservoir draining an agricultural watershed. Environmental Science & Technology, 48 (19), 11100-11108. https://doi.org/10.1021/es501871g.

  4. Deemer, B.R., Harrison, J.A., Li, S., Beaulieu, J.J., DelSontro, T., Barros, N., Bezerra-Neto, J.F., Powers, S.M., dos Santos, M.A., Vonk, J.A., 2016. Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis. BioScience 66, 949–964. https://doi.org/10.1093/biosci/biw117

  5. Deborde, J., Anschutz, P., Guérin, F., Poirier, D., Marty, D., Boucher, G., Thouzeau, G., Canton, M., Abril, G., 2010. Methane sources, sinks and fluxes in a temperate tidal Lagoon: The Arcachon lagoon (SW France). Estuarine, Coastal and Shelf Science, Elsevier, 89, 256-266 (hal-00524642)

  6. DelSontro, T., McGinnis, D.F., Sobek, S., Ostrovsky, I., Wehrli, B., 2010. Extreme methane emissions from a Swiss hydropower reservoir: Contribution from bubbling sediments. Environmental Science & Technology, 44 (7), 2419-2425. https://doi.org/10.1021/es9031369

  7. Encinas Fernandez, J., Peeters, F., Hofmann, H., 2014. Importance of the autumn overturn and anoxic conditions in the hypolimnion for the annual methane emissions from a temperate lake Environmental Science & Technology, 48, 7297-7304.

  8. Encinas Fernandez, J., Hofmann, H., Peeters, F. 2020. Diurnal Pumped‐Storage Operation Minimizes Methane Ebullition Fluxes From Hydropower Reservoirs Water Ressources Research, Volume 56, Issue 12.

  9. Engle, D., Melack, J.M., 2000. Methane emissions from an Amazon floodplain lake: Enhanced release during episodic mixing and during falling water Biogeochemistry, 51 (1), 71-90.

  10. Harrison, J.A., Deemer, B.R., Birchfield, M.K., O’Malley, M.T., 2017. Reservoir water-level drawdowns accelerate and amplify methane emission Environmental Science & Technology, 51(3), 1267-1277.

  11. Hertwich, E.G., 2013. Addressing biogenic greenhouse gas emissions from hydropower in LCA Environ. Sci. Technol., 47(17): 9604-11.

  12. Kosten, S., van den Berg, S., Mendonça, R., Paranaíba, J. R., Roland, F., Sobek, S., Van Den Hoek, J., Barros N. 2018. Extreme drought boosts CO2 and CH4 emissions from reservoir drawdown areas Inland Waters Volume 8, 2018 - Issue 3.

  13. Li, S. Y., Zhang, Q. F., Bush, R. T. and Sullivan, L. A., 2015. Methane and CO2 emissions from China’s hydroelectric reservoirs: a new quantitative synthesis Environmental Science and Pollution Research International 22(7): 5325–5339.

  14. Linkhorst, A., Hiller, C., DelSontro, T., Azevedo, G.M., Barros, N., Mendonça, R., Sobek, S. 2020. Comparing methane ebullition variability across space and time in a Brazilian reservoir Limnology and Oceanography, Volume 65, Issue 7.

  15. Luyssaert, S., Abri,l G., Andres, R., Bastviken, D., Bellassen, V., Bergamaschi, P., Bousquet, P., Chevallier, F., Ciais, P., Corazza, M., Dechow, R., Erb, K.H., Etiope, G., Fortems-Cheiney, A., Grassi, G., Hartmann, J., Jung, M., Lathière, J., Lohila, A., Mayorga, E., Moosdorf, N., Njakou, D.S., Otto, J., Papale, D., Peters, W., Peylin, P., Raymond, P., Rödenbeck, C., Saarnio, S., Schulze, E.D., Szopa, S., Thompson, R., Verkerk, P.J., Vuichard, N., Wang, R., Wattenbach, M., Zaehle, S., 2012. The European land and inland water CO2, CO, CH4 and N2O balance between 2001 and 2005 Biogeosciences, 9, 3357-3380.

  16. Maeck, A., DelSontro, T., McGinnis, D. F., Fischer, H., Flury, S., Schmidt, M., Fietzek, P. and Lorke, A., 2013. Sediment trapping by dams creates methane emission hot spots Environmental Science and Technology 47(15): 8130–8137.

  17. Maeck, A., Hofmann, H., Lorke, A., 2014. Pumping methane out of aquatic sediments - ebullition forcing mechanisms in an impounded river Biogeosciences, 11 (11), 2925-2938.

  18. Raymond, P.A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais, P., Guth, P., 2013. Global carbon dioxide emissions from inland waters Nature, 503 (7476), 355-9.

  19. Sobek, S., DelSontro, T., Wongfun, N., Wehrli, B., 2012. Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir Geophysical Research Letters, 39 (1).

  20. Varadharajan, C., Hemond, H.F., 2012. Time-series analysis of high-resolution ebullition fluxes from a stratified, freshwater lake Journal of Geophysical Research: Biogeosciences, 117 (G2).

Cyanobacterial blooms

  1. Bullerjahn, G.S., McKay, R.M., Davis, T.W., Baker, D.B., Boyer, G.L., Anglada, L.V., Doucette, G.J., Ho, J.C., Irwin, E.G., Kling, C.L., Kudela, R.M., Kurmayer, R., Michalak, A.M., Ortiz, J.D., Otten, T.G., Paerl, H.W., Qin, B., Sohngen, B.L., Stumpf, R.P., Visser, P.M., Wilhelm, S.W., 2016. Global solutions to regional problems: Collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study. Harmful Algae 54, 223–238. [https://doi.org/10.1016/j.hal.2016.01.003]

  2. Callieri, C., Bertoni, R., Contesini, M., Bertoni, F., 2014. Lake Level Fluctuations Boost Toxic Cyanobacterial "Oligotrophic Blooms PLoS ONE 9. [https://doi.org/10.1371/journal.pone.0109526]

  3. Chorus, I., 2012. Current approaches to Cyanotoxin risk assessment, risk management and regulations in different countries 151.

  4. Dietrich, D.R., Fischer, A., Michel, C., Hoeger, S.J., 2008. Toxin mixture in cyanobacterial blooms – a critical comparison of reality with current procedures employed in human health risk assessment Hudnell, H.K. (Ed.), Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs, Advances in Experimental Medicine and Biology. Springer New York, pp. 885–912.

  5. Dolman, A.M., Rücker, J., Pick, F.R., Fastner, J., Rohrlack, T., Mischke, U., Wiedner, C., 2012. Cyanobacteria and Cyanotoxins: The Influence of Nitrogen versus Phosphorus PLOS ONE 7, e38757.

  6. Ernst, B., Höger, S.J., O´Brien, E., Dietrich, D.R., 2009. Abundance and toxicity of Planktothrix rubescens in the pre-alpine Lake Ammersee, Germany Harmful Algae 8, 329–342.

  7. Ibelings, B.W., Backer, L.C., Kardinaal, W.E.A., Chorus, I., 2015. Current approaches to cyanotoxin risk assessment and risk management around the globe Harmful Algae 49, 63–74.

  8. O’Neil, J.M., Davis, T.W., Burford, M.A., Gobler, C.J., 2012. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change Harmful Algae, Harmful Algae–The requirement for species-specific information 14, 313–334.

  9. Paerl, H.W., Gardner, W.S., Havens, K.E., Joyner, A.R., McCarthy, M.J., Newell, S.E., Qin, B., Scott, J.T., 2016. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients Harmful Algae, Global Expansion of Harmful Cyanobacterial Blooms: Diversity, ecology, causes, and controls 54, 213–222.

  10. Paerl, H.W., Huisman, J., 2008. Blooms Like It Hot Science 320, 57–58.

  11. Paerl, H.W., Otten, T.G., 2013. Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls Microb. Ecol. 65, 995–1010.

  12. Posch, T., Köster, O., Salcher, M.M., Pernthaler, J., 2012. Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming Nat. Clim. Change 2, 809–813.

  13. Quiblier, C., Susanna, W., Isidora, E.-S., Mark, H., Aurélie, V., Jean-François, H., 2013. A review of current knowledge on toxic benthic freshwater cyanobacteria – Ecology, toxin production and risk management Water Res. 47, 5464–5479.

  14. Salmaso, N., 2010. Long-term phytoplankton community changes in a deep subalpine lake: responses to nutrient availability and climatic fluctuations Freshw. Biol. 55, 825–846.

  15. Salmaso, N., Buzzi, F., Garibaldi, L., Morabito, G., Simona, M., 2012. Effects of nutrient availability and temperature on phytoplankton development: a case study from large lakes south of the Alps Aquat. Sci. 74, 555–570.

Social Interactions

  1. Ansar, A., Flyvbjerg, B., Budzier, A., Lunn, D., 2014. Should we build more large dams? The actual costs of hydropower megaproject development Energy Policy 69, 43-56.

  2. Bakken, T.H., Aase, A.G., Hagen, D., Sundt, H., Barton, D.N., Lujala, P., 2014. Demonstrating a new framework for the comparison of environmental impacts from small- and large-scale hydropower and wind power projects Journal of environmental management 140, 93-101.

  3. Bakken, T.H., Sundt, H., Ruud, A., Harby, A., 2012. Development of Small Versus Large Hydropower in Norway– Comparison of Environmental Impacts Energy Procedia 20, 185-199.

  4. Bhaduri, A., Bogardi, J., Siddiqi, A., Voigt, H., Vörösmarty, C., Pahl-Wostl, C., Bunn, S. E., Shrivastava, P., Lawford, R., Foster, S., Kremer, H., Renaud, F. G., Bruns, A., Osuna, V. R., 2016. Achieving Sustainable Development Goals from a Water Perspective Frontiers in Environmental Science 21, 211.

  5. Blackbourn, D., Rennert, U., 2008. Die Eroberung der Natur - Eine Geschichte der deutschen Landschaft Pantheon, München, Germany, ISBN 9783570550632.

  6. Bogardi, J. J., Dudgeon, D., Lawford, R., Flinkerbusch, E., Meyn, A., Pahl-Wostl, C., Vielhauer, K., Vörösmarty, C., 2012. Water security for a planet under pressure: interconnected challenges of a changing world call for sustainable solutions Current Opinion in Environmental Sustainability, 4, 1, pp. 35-41.

  7. Borchardt, D., Bogardi, J. J., Ibisch, R. B., 2016. Integrated Water Resources Management: Concept, Research and Implementation Springer International Publishing, Cham, Germany, ISBN 978-3-319-25069-4.

  8. Carnea, Michael, M., 1997. Hydropower Dams and Social Impacts. A Sociological Perspective.

  9. Daus, M., Koberger, K., Gnutzmann, N., Hertrich, T., Glaser, R., 2019. Transferring Water While Transforming Landscape: New Societal Implications, Perceptions and Challenges of Management in the Reservoir System Franconian Lake District. Water 2019, 11(12), 2469.

  10. Deutscher Bundestag, 2009. Gesetz zur Ordnung des Wasserhaushalts (Wasserhaushaltsgesetz).

  11. Dittmann, R., Froehlich, F., Pohl, R., Ostrowski, M., 2009. Optimum multi-objective reservoir operation with emphasis on flood control and ecology Nat. Hazards Earth Syst. Sci., 9.

  12. European Environment Agency, 2018. European waters: Assessment of status and pressures 2018 Publications Office of the European Union, Luxemburg.

  13. European Parliament And The Council, 2007. On the assessment and management of flood risks.

  14. EU, 2000. Good-quality water in Europe (EU Water Directive).

  15. German Ministry of Justice, 2020. Verordnung über die Qualität von Wasser für den menschlichen Gebrauch (Trinkwasserverordnung).

  16. Giesecke, J., Mosonyi, E., 2009. Wasserkraftanlagen. Planung, Bau und Betrieb Springer, Heidelberg.

  17. Glaser, R., 2014. Global change. Das neue Gesicht der Erde Primus Verlag, Darmstadt, Germany, ISBN 9783863120993.

  18. Godde, D., Engels, K., Schmid, S., Achatz, R., Haupt, O., Beer, C., Höller, S., Jaberg, H., Miller, B., Heigerth, G., Niemann, A., Perau, E., Schreiber, U., Koch, M.K., Schüttrumpf, H., Pummer, E., Günther, M., Plenker, D., 2015. Pumpspeicherkraftwerke Heimerl, S. (Ed.), Wasserkraftprojekte, Band 2. Ausgewählte Beiträge aus der Fachzeitschrift WasserWirtschaft. Springer Vieweg, Wiesbaden, pp. 277-354.

  19. Green, K., Armstrong, J.S., Graefe, A. 2007 Methods to Elicit Forecasts from Groups: Delphi and Prediction Markets Compared Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 8, pages 17-20, Fall.

  20. Hanson, T.R., Upton Hatch, L., Clonts, H.C., 2007. Reservoir water level impacts on recreation, property and non user values Journal of the American water ressource association. 38/4. p.1007-1018.

  21. International Commission on Large Dams (ICOLD), 2013. Talsperren in Deutschland Springer Vieweg: Wiesbaden, Germany, 2013; ISBN 978-383-48210-7-2.

  22. Kirchherr, J., Charles, K.J., 2016. The social impacts of dams. A new framework for scholarly analysis Environmental Impact Assessment Review 60, 99-114.

  23. Kirchherr, J., Pohlner, H., Charles, K.J., 2016. Cleaning up the big muddy. A meta-synthesis of the research on the social impact of dams Environmental Impact Assessment Review 60, 115-125.

  24. Kleinhenz, A., Koenig, A., 2018. Home ranges and movements of resident graylag geese (Anser anser) in breeding and winter habitats in Bavaria, South Germany PloS one 13, e0202443.

  25. Kornijów, R., 2009. Controversies around dam reservoirs. Benefits, costs and future Ecohydrology & Hydrobiology 9, 141-148.

  26. Lindström, A., Ruud, A., 2017. Whose Hydropower? From Conflictual Management into an Era of Reconciling Environmental Concerns; a Retake of Hydropower Governance towards Win-Win Solutions? Sustainability, 9, P. 1262.

  27. Marshall, A. C., Duram, L. A., 2017. Factors influencing local stakeholders’ perceptions of Tisza River Basin management: The role of employment sector and education Environmental Science & Policy, 77, pp. 69-76.

  28. Mauksch, S., von der Gracht, H., Gordon, T.J. 2020 Who is an expert for foresight? A review of identification methods Technological Forecasting and Social Change, Volume 154, May 2020, 119982.

  29. Nguyen, H., Pham, T., Lobry de Bruyn, L., 2017. Impact of Hydroelectric Dam Development and Resettlement on the Natural and Social Capital of Rural Livelihoods in Bo Hon Village in Central Vietnam Sustainability 9, 1422.

  30. Pahl-Wostl, C., 2019. Governance of the water-energy-food security nexus: A multi-level coordination challenge Environmental Science & Policy, 92, pp. 356–367.

  31. Pahl-Wostl, C., 2015. Water Governance in the Face of Global Change: From Understanding to Transformation Springer, Cham.

  32. Schrenk-Bergt, C., Krause, D., Lewandowski, J., Steinberg, C.E.W., 2004. Eutrophication Problems and Their Potential Solutions in the Artificial Shallow Lake Altmühlsee (Germany) Studia Quarternaria 21, 73-86.

  33. Siegmund-Schultze, M., do Carmo Sobral, M., Alcoforado de Moraes, M.M.G., Almeida-Cortez, J.S., Azevedo, J.R.G., Candeias, A.L., Cierjacks, A., Gomes, E.T.A., Gunkel, G., Hartje, V., Hattermann, F.F., Kaupenjohann, M., Koch, H., Köppel, J., 2018. The legacy of large dams and their effects on the water-land nexus Reg Environ Change 18, 1883-1888.

  34. Tilt, B., and Gerkey, D., 2016. Dams and population displacement on China’s Upper Mekong River: Implications for social capital and social–ecological resilience Global Environmental Change 36, pp .153-162.

  35. Tilt, B., Braun, Y., He, D., 2009. Social impacts of large dam projects: A comparison of international case studies and implications for best practice Journal of environmental management, 90 Suppl 3, pp. 249-57.

  36. Weimer-Jehle, W., 2006. Cross-Impact Balances: A System-Theoretical Approach to Cross-Impact Analysis Technological Forecasting and Social Change, 73:4, 334-361.

  37. Winker, M., Schramm, E., Schulz, O., Zimmermann, M., Liehr, S., 2016. Integrated water research and how it can help address the challenges faced by Germany’s water sector Environmental Earth Sciences, 75, 17.

  38. World Commission on Dams, 2000. Dams and development. A new framework for decision-making Earthscan, London. ISBN: 1-85383-798-9.

  39. Zarfl, C. Lumsdon, A.E. Berlekamp, J. Tydecks, L. Tockner, K., 2015. A global boom in hydropower dam construction Aquat Sci, 77, 161–170.